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The impedance of scaled transmission lines 

M Ishida and R M Hillt 
The Department of Physics, King’s College London, The Strand, London WC2R ZLS, 
UK 

Received 11 October 1991 

Abstract. If is shown that resistance/capacitance transmission lines Bith multiplicative 
scalingrelationshipsin theresistiveandcapacitiveelementsexhibitalimitedrangeofspecrral 
responses. At high and low frequencies rhecharacteristicimpedanceofthe first, and in aline 
of finite length the last. elementsof the line dominate. In the intermediate frequency range 
either constant phase angle response or fracrional power response may be obtained. The 
scaling conditions necessary for the observation of these intermediare-frequency responses 
are established. It is shown that the scaled transmission lines can be considered as fractal 
when the scaling derives from fractional dimensional properties in continuous media. 

1. Introduction 

In recent years theelectricalimpedancesofanumberoffractallyscaledelectricalcircuits 
have been examined, generally as models of specific physical problems. One example is 
the examination of the impedance of a rough electrode surface immersed in a conducting 
electrolyte. This work was initiated by Le Mehaute and Crepy (1983) and has developed 
along a number of parallel courses; the examination of Cantor bar-like scaled surfaces 
by Liu (1985,1986), Kaplan and Gray (1985), Liuera/(1986), Kaplan eral(1986,1987) 
and Geertsma era1 (1989); the use of Koch curves as sections of rough surfaces by Nyikos 
andPajkossy (1985), PajkossyandNyikos(1986,1988,1989), Wang(1988)anddeLevie 
(1989); the AC response of fractal networks by Clerc er a/ (1984, 1985, 1990) Yu er a/ 
(1986) and Dissado and Hill (1988): and the examination of porous Sierpinski carpet 
electrodes by Sapoval (1987) and Hill and Dissado (1988). A common feature of these 
analyses has been the development of constant phase angle (CPA) response in either the 
electrical impedance or admittance. 

The CPA behaviour arises from the development of a frequency region over which 
the impedance (admittance) at angular frequency w can be expressed (Liu 1986) by the 
scaling relationship 

z(w/wn) xz(uw/wn) (1) 

where on is the characteristic frequency of the system, x the scaling parameter for the 
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Figure 1.Twoscaled transmission lines. In (II) the capacitorsshunt the resistive line toearth 
whilst in (b)  the elements have been exchanged so that the line iscapacitive and coupled to 
earth through the resistances. In bothcasesthe individualcapncitonare scaled by o and the 
resistors by !3. The lines can be either infinite or finite. 

magnitude of the impedance Zand q the equivalent scaling parameter for the frequency 
w .  We define the CPA response from the relationship 

Z(w/wo)  = Zu(iw/wu)’” ( 2 )  

where substitution of (2) into (1) gives a solution of the latter when 

U = logx/log q. (3) 

Furthermore, equation ( 2 )  can be expressed in the form 

Z ( w / w o )  = Zo(w/w0) -”  [cos ( u a / 2 )  - i sin ( v n / 2 ) ]  (4) 

which shows that the phase angle va /2  is constant and, in particular, independent of the 
frequency w .  

Here we consider a more general class of scaled circuit than those referred to 
earlier. This class is based on transmission lines containing resistance and capacitance 
components, multiplicatively scaled as shown in figure 1 ,  to form scaled transmission 
lines (sn). We note that three of the circuits, those investigated by Liu (1985). Kaplan 
and Gray (1985) and Sapoval (1987), can be reconstructed into the form considered 
here, so that our conclusions are of general applicability. 

When a. and /3, the scaling parameters of capacitance and resistance, respectively, 
are both unity, the scaled lines of figure 1 degenerate to the conventional ladder-like 
Cauer network and the properties of the line can be developed in terms of a propagation 
parameter (Connor 1972). When (Y and/or /3 are not unity, the propagation parameter 
becomes dependent on position in the line and no longer gives an effective description 
of the total line impedance (admittance). An exact technique for the analysis of sealed 
lines based on the continuous fraction approach has been developed (Liu 1985) and is 
used here to characterize the impedance properties, both in the infinite line case and for 
truncated lines of finite length. 

In thisanalysis asecond formof fractional power-law response (FPR) in the frequency 
domain has been obtained. FPR behaviour has already been reported for a scaled, 
Sierpinski-carpet. porous electrode immersed in an electrolyte (Hill and Disado 1988) 
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Figure 2. Schematic representation of a fractal transmission line. A resistive coating of 
constant thickness and width varying in a irractional power law form in length with exponent 
dR lies on top of an insulating layer. The width of the insulator matches that of the coating 
but the thickness varies independently with length but in a fractional power law manner, 
with exponent dr. Both layers are supported by a conducting substrate. The magnitude of 
the CPA exponent is dR/dr. 

and in a deterministic scaled resistance/capacitance system (Dissado and Hill 1988). 
The FPR characteristic is given in terms of impedance by 

Z(w/w,) = Z, - Z,(iw/w,)+' 

Z (w/w, )  = &,{I - (w/wo)p [cos (+z/2) + i sin ( p z / 2 ) ] )  

( 5 4  

(5b) 

so that in terms of the real component of Z(o/w,) the fractional power law term forms 
a correction to Zo,  but for the imaginary component it  is the only response, as it is for 
C~~.Theconstant,Z,,isnotanarbitrarynumberbut themagnitudeofthe totalresponse 
at zero frequency and hence an integral part of the complete description of the power 
law behaviour. 

In the analysis developed here we use discrete resistance and capacitance elements 
to form the scaled line, as shown in figure 1. If we consider these elements as being 
infinitely small so as to form a continuum, and assume that the scaling is given by a cross- 
section dependence on the length along the line, as in figure 2, we can associate these 
dimensional properties with the resistance and capacitance, assuming constant res- 
istivity and permittivity. Consider, for example, the sth element, at position L,, with a 
length-dependent width; then the scaling parameter for the resistance may be expressed 
in the form 

Ink?] = dR In[Ld(L, - 111 (6a) 

where dR is the dimension associated with the resistance in our continuum model. 
Assuming a suitable thickness variation in the insulating medium for the same model, 
we have 

l44 = (dc - d ~ )  In[LI(L, - 111 (6b) 

so that we may express our infinite-line scaling relationships in terms of the properties 
of an equivalent continuum model of a fractal transmission line. 
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Figure 3. A log-log plot of the unit resistance nor- 
malized response as a function of frequency for the 

Lz scaledtransmissionlineshowninfigurel(a).o/ = p = 
2 and the number of scalings N = IO.  From equation 
(IO). when the scalingparameters are equal, the CPA 
behaviour has an exponent of 0.5 as shown in this 
diagram lor x C 1. The truncation of the CPA bchav- 
iouratx,isgiven fromequation(1lb) asadispersion 
in the real component of Z of magnitude pN (i.e. 
2'O). For x > 1 the response is that of a resistance of 
magnitude Rinserieswithacapacitanceofmagnitude 

1 2  

-6 
-10 -6 .2 2 6 

Log 1x1 C(i.e. lheimpedanceoftheN=Oelement). 

2. Development of scaled transmission Lies 

2.1 Simple lines, CPA behauiour 

The impedance of  the scaled line shown in figure l ( a )  (case (a)) can be written as the 
continuous fraction 

(7) . .  . ,.,....., .,. , , - , ~ - - ~  ,-,,,,,,,,,,,,,,, " , , ,  , ,  
1 

. .. . 

,. ,, , ("I, . , . I . _ . , , , , .  , , , , , ,, , 
1 

Z ( w )  = R + * 
~ ~~ 

. , .,, 
1 iwC + 

, I ,  .,, . . .. .. ... . . 1 
RR + 

.... ~~~~ 

1 
iwwC + 

1 
P 2 R  + 

ia'wC + 
1 

icu3wC + . . . /3'R + 

Dividing by R and substituting x for o R C  (=UT) allows the continuous fraction to be 
expressed in the form 

Z(x)/R = 1 + p/[ipx + R/Z(cuPx)] (8) 

This equation shows that the impedance of the infinite scaled transmission line can be 
represented by a recurrence relationship with the magnitude scaled multiplicatively by 
the factor p(= 2) and the frequency, x ,  scaled separately by the product a/3(= 7). 

When the conditions 

x < l  (9a) 

fiZ(cu/3x)/R < llix (9b) 

PZ(@PX)/R ' 1 (94 

apply. equation (8) can be written as the recurrence relation form of equation (1) which 
results in CPA behaviour, as shown in figure 3. The conditions (8) define an area in a 
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0 0 0 

Log 1x1 
Figure4. Schematicplotsof the log of the response Z(x) in termsoftheelemental mistance 
R. as a function of the log of the frequency scaled by the elemental relaxation time RC. The 
shaded regions indicate the areas in which CPA or FPR behaviour is expected to be observed. 
The specific conditions (a )  to (c) are considered in the text. 

log(Z/R) versus lo&) plane, see figure 4(a) ,  within which the CPA is observed. From 
equations (1) and (2), the magnitude of the exponent of the CPA response is 

v = log P/log(CuP) (10) 
whichforbothg, up > 1 andF,@ < 1 ispositive,asrequired,givingafurthercondition 
on the observation of the  response. We note that for the fractal transmission line 

v = d,/d, = d ,  

which, following Lui (1986), defines the exponent v as the fractal dimension of the CPA 
response of the impedance. 

It is convenient when calculating the full response from equation (8) to limit the 
numberofiterations. Machinecomputationcan then bedone bystartingwith the highest 
order term and working back to the first element. For the case shown in figure 3, the 
imaginary component of the impedance rises continuously at low frequencies (K w - ’ ,  
x < x,)  whilst the real component saturates. Approximating the limiting response by 
setting w to zero we have, for the real component Z’ (w) ,  that 

Z(w) /R  = 1 + p + p2 + p3 + . . . gN (11) 
so that 

where N + 1 is the number of elements in the line. 
From equations ( l la)  and (llb) we can determine the frequency below which the 

impedance no longer follows CPA behaviour. Taking this frequency asx,, the response 
in the CPA region is given by A(ir)-” and, as our functions are normalized in terms of 
impedance by R and frequency by w,, the constant A is unity. 

Hence 

Finally we note that condition (90) requires that anomalous scaling behaviour is only 
observed for the scaled line of figure l(a) for normalized frequencies less than unity 
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Figure 5. Response plot for fhe transmission line 
shown in figure l(b), The inversion of the scaling 
parameters relative to those used toobtain figure3 has 
rewltedin aninversionof thecharacteristicshownin 
figure3throughthepointx = l , Z ( x ) / R =  I . a = p =  
0.5, N = 10. 

( w  < l/RC) and when LY > 1 and /3 > 1. Whenx > 1 the impedance. from equation (8). 
can be approximated as 

Z(x) = R(l + I/k) = R + l/iwC (13) 
which is the characteristic of a resistance of magnitude R in series with a capacitance of 
magnitude C ;  that is, the response of the first RICelement in the line. 

Hence, for frequencies greater than the characteristic frequency of the first element, 
the current does not propagate along the line but is terminated by the (low) impedance 
of the N = 0 element. For frequencies small compared to x,, the impedance charac- 
teristics of the line of finite length are essentially dominated by those of the final element 
in the line, see equation ( l l b ) ,  so that the complete line does not make a significant 
contribution to the total impedance. For a line for which N is infinite, x, becomes zero 
and the scaled region extends to zero frequency. Therefore we have shown that the 
observation of CPA behaviour requires the bulk of the line to contribute to the impedance 
and the CPA exponent is a direct measure of the scaling nature of the elements forming 
the line. 

A second STL example (case (6)) can be obtained by transposing the resistance and 
capacitance elements, as shown in figure l (b) .  The development of the impedance 
relationship for thiscasefollowsanequivalent pattern, with the reduced scalingrelation 
being obtained as 

Z(x)/R = l/ir + {1/(1 + R/,~Z(LY@X)]} (14) 
from which we can obtain the conditions for observation of CPA behaviour of equation 
(1) as 

.r > 1 (15a) 

PZ(ffBx)/R < 1. W C )  

BZ(a$x)/R > l/iu (156) 

Theseconditionsareshowninfigure?(b). Theexponentof thecparesponse, v,isagain 
given by equation (10) but with LY and /3 less than unity. Examination of the infinite- 
frequency limit gives the limiting magnitudes of the impedance as 

Z(x)/R = PN /3< 1. (16) 
Consideration of these characteristics, and a comparison of figures 3 and 5, shows 
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that this response is an inversion, through the datum point Z ( x ) / R  = 1, x = 1, of that 
consideredpreviously. Hence the theoremofinversion through apole, whichisafeature 
of conventional transmission lines, carries over into the scaled case. 

2.2 Sirnple lines, FPR behaoiour 

Alternative solutions to equation (7) can be derived for a different range of parameters. 
When (case (c)) we have 

pZ(rupx)/R < l/ir (174 

and 

l/[ix + R/PZ(LUpx)] < 1 

a solution of the form can be obtained 

Z ( x ) / R  = 1 + PZ(aPx) /R .  

Hill and Dissado (1988) have shown that a solution to equation (18) is the function 

Z ( x ) / R  = 2" - Zo(ir)!' (19) 

with 

which, for (Y > I and /3 < 1 such that (YD > 1 ,  defines the FPR characteristic with p 
negativeandwithamoduluslessthanunity, -1 < p < 0. Equations(17)givetheallowed 

.TO -6 - 2  2 6 10 

Log [ X I  Log 1x1 

Figure 6. Two examples of FPR behaviour for the scaled transmission line of figure I(=). I n  
(a),.= 3.0,p= 0.7 ,N = 10and20. Undertheseconditions,comparewithfigure4(c),F~~ 
behaviourdevelopsinthequadrantx < 1 andZfR < 1. Fortheseparticularvaluerofscaling 
parameters the fPR exponent is +0.46. In this plot the effect of changing the value of N is 
shown; i t  is clear that as N approaches infinity the response plot takes the form of a single 
dispersioninZ'andapeakinthelosscomponent.In(b),a= 0.7.8 = 3.0,N = 20, Exchange 
of the magnitudes of the parameters from those in (a )  requires FPR behaviour to appear in 
the octant bounded by the unity response value and x- ' ,  as shown in figure 4(a). The 
magnitude of the FPR dispersion is &"and = 1 t Ina/lnqS. 
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area in thelog-logplotof Z(w)/Rasafunetionoffrequency,asinfigure4(~). Particular 
examples of FPR behaviour are presented in figure 6. In figure 6(a) the constant term for 
x C 1 is the resistance and a fractional power law of exponent +0.48 is found in the 
imaginary (i.e. capacitive) component and gives rise to a loss peak in the region x = 1. 
In this figure we show the effect of varying the number of iterations. I t  is clear that, as 
N approaches infinity, the response will show a single dispersion in Z'(x)  and its 
accompanying loss peak. 

Alternatively. we can assume (case (d) )  that Z ( x ) / R  for x < 1 is greater than unity, 
so that from equation (8) we have that 

M lsltidu and R M Hili 

Z(x)/R = /3Z[a/3x]/[R + ipxZ(CUpx)] (21) 
which has as a solution 

Z(x)/R = A / i  + D ( ~ X ) - ~  

with 

A = ~ - c Y  

p = 1 + In a / h  L Y / ~  

for LY < 1 and /3 > 1 so that a/3 > 1. The form of this response is shown in figure 6(b) 
with the FPR now appearing in the real component of the impedance and the capacitance 
showing a dispersion of magnitude 1-CY. 

In a similar manner (case ( e ) ) ,  considering equation (14) under the condition 

P Z ( d W / R  < 1 (24) 
we have 

Z(x) /R  =A/ [&  + /3Z(LUpx)/R] (25) 
for which equation (22) is a solution (for x < 1) with A and p given by 

A = CY/(@ - 1) (264 

= In /3/h L Y / ~  (266) 

with CY > 1, /3 < 1 and  CY/^ < 1. A response of this form is shown in figure 7(a). 

case (case (f)) the solution is given by 
Alternatively, the term (&)-I can be neglected for x > 1 in equation (14), in which 

Z(x)/R = Zo + D(ir)-fl (27) 

with 

with LY < 1, /3 > and cup C 1. Note that p is positive under these conditions. 
Examples of these final sets of FPR characteristics are given in figure 7(b)  and a 

summary of the properties of the fractional power responses is listed in table 1. It should 
be noted that the limitations on the ranges of the exponents Y and p limit the ranges of 
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k -  

(a)  0 
' 

\ 
\ 
\ - 
\ -  
\ LL 1 -  1 

f! 
g - 2  

2'1x1 * , \ , , , , x - 0  
- 

-I 
-4  - 

- 6  -6 - 
-10 -6  -2 2 6 10 -10 - 6  -2 2 6 10 

Log ( X I  Log(x1 
Figure 7. Two examples of FPR behaviour for the scaled transmission line of figure I(b). In 
(a), n = 1.126, p = 0.7, N = 100. This is the final form of FPR in which the dispersive 
component is the capacitance. Without scaling, the real component would be expected to 
followtheDebyecharacteristicforiur > 1 (i.e. o( w-*) butisnowofafractionalpowerform 
with anexponent that lies between -1 and -2, andin thiscase is -1.49. In (b), LY = 0.l.p = 
2.0, FPR behaviour of exponent -0.43 develops in the quadrant x > 1 and Z/R < I .  The 
response for N = 10 is truncated with & about lo6. 

Table 1. Summary of the power law regions of behaviour 

the scaling parameters (Y and p.  The regions of behaviour for the six forms of response 
are shown on a log cu/log p plot in figure S; regions of Cp.4 behaviour are shown singly 
shaded and those of FPR behaviour cross-shaded. Note that the limiting conditions are, 
in practice, (Y, p ,  cx2p and (up2 greater or less than unity. 

As has already been indicated in figures 3 , 5 , 6  and 7 ,  when no power law behaviour 
is present, the impedance characteristics for both examples degenerate to those of a 
resistance and capacitance in series connection, namely a constant resistance as the real 
component of the impedance and the inverse-frequency dependence of a constant 
capacitance as the loss component. 

2.3 Complex lines 

The N = 0 elements for four more complex STLS are shown in figure 9. In developing 
these elements, we retain the scaling variables CY and p for capacitance and resistance 
with the further condition that every capacitance and resistance i s  required to be scaled. 
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J3.1 

Figure 8. A schematic representation on a log q'log,B plot of lhe regions of applicahility of 
the model responsesfor simplescaled lransmissionlinesfromsections2. I and2.2.Thc single 
shading quadrants are regions of CPA response and the cross-shaded areas those of FPR 
behaviour. The unshdded regions around afi = 1 do not exhibit scaling behaviour, The 
labellingcorrespondsto thatusedinsecfions2.1 and2.2. 

a.[- q y q - : .  L -  

CT R 
, ;.. ,. - _ _  , 

In) 
Figure 9. The four N = 0 circuit elements used as the basis for more complex fractal 
transmission lines. In the development of the lines all capacitances are scaled by a and all 
resistances by f i  at each iteration. 

Usingthecontinuousfraction development outlinedin section2.1, we have obtained 
for these STLS the conditions necessary for observation of CPA and FPR behaviour which 
are listed in table 2. In carrying through this work, it was found that the conditions for 
observation of fractional power law behaviour are more restrictive for these complex 
lines than for the simple cases described in sections 2.1 and 2.2. Indeed, the lines 
characterized by the elements (k)  and (I) in figure 9 exhibit only simple parallel or series 
rcsistance/capacitance behaviour. The details of the approximations necessary for the 
development of scaled behaviour in the four circuits in figure 9 are given in table 2, in 
which it can be seen that the development of an anomalous frequency response in the 
circuits (k) and (I) requires conditions that are mutually exclusive. Furthermore, the 
only manner in which the STLS (m) and (n) may be manipulated to exhibit fractional 
power law behaviour was to develop them into the effective forms of figure 1 (i.e. as 
'simple' scaled transmission lines). For both cases (m) and (n), CPA and FPR responses 
could then be obtained, as indicated in table 1. 
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Table 2. Summary of the reduced forms and conditions for the development of the circuits 
in figure 9. 

~ 

Circuit Reduced form Conditions Comments 

1 
PZ(a@x)/R > l/k and <l/k for CPA 
l/k > 1 + Ilk t BZ(@x)/R for FPR 

Not developed 
Not developed 

Z(X) 
1 

I + 1 / k  t BZ(aBx) /R 

1 

9(k) -= 
R 

i r t  

BZ(a@x)/R > 1 and < 1 for CPA 
I / i  > 1 + l i r  + p'Z(lrpx)/R for FPR 

Not developed 
Not developed 1 

1 t I/ir + P Z ( a p x ) / R  

90)  
I +  

tt 
1 

PZ(c$xUpx)/R > 1 > ir for CPA Allowed 
Z ( x ) / R  = l /( l  + k) + B Z ( e P x ) / R  for 
mR Allowed 
B Z ( e / h ) / R  > l/ir C 1 for CPA Allowed 
Z ( x ) / R  = 1 + P Z ( a @ x ) / R  for FPR Allowed 

1 
9(m) K + ir + R / p Z [ a f i x ]  

1 1 
9(n) K + 1 + R / B Z [ a p x ]  

Typical response curves for cases (m) and (n) are shown in figures lO(a) and 10(b), 
respectively. For case (m), CPA behaviour is found for a and p greater than unity and 
FPR when CY is greater than unity and p is less than unity. The equivalent responses have 
already been presented in figures 3 and 6(a), the essential difference being for x greater 
than unity, where the real impedance now decays as w-2instead of remaining constant, 
(i.e. the initial resistance and capacitance elements now act in parallel rather than in 
series). For case (n) the equivalent change with Z"(o) 0~ x + I ,  occurs at low frequencies 
(x  < l),andtheC~~and~PRresponsesappearforxgreaterthanunity. asshowninfigure 
10(b). 

LogIx) Log ( X I  

Figure 10. Two examples of scaled behaviour for the circuits in figure 9. In (a) are shown 
typical responses observed for case (m). (i) a = 2.0, j3 = 2.0, N = 10 and (ii) a = 3.0, ,3 = 
0.7, N = U).  Note particularly the changed response fm x > 1 relative to that obtained for 
the equivalent simple line in figures 3 and 6(a). In (b) are s h o w  typical responses for case 
(n)with(i)a=0.1,~=2.0,N=20and(ii)a=0.5,~=0.1,N=5.Againtheessentia1 
difference from figure 7(b) is not in the scaled region but in the nature of the unscaled 
response. 
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3. Discussion 

In carryingout the development of the~response of fractally scaled transmission lines we 
have chosen to work in terms of the frequency-dependent impedance Z ( w ) .  Equivalent 
results can be derived for the admittance Y(w)  or the capacitance C(w) where 

In terms of CPA this means that the exponents for admittance have the same magnitude 
but are of opposite sign to those of impedance whereas the capacitance exponents are 
of the same sign but of magnitude (1 - v), where v is the impedance exponent (i.e. 
C(0) cc (iw)"- '). Hence in all cases the CPA exponent is fractional. FPR behaviour is also 
acharacteristicofall threemethodsofpresentation, but theequivalencesarenot asdirect 
and depend on the configuration of the individual elements, just as the developments of 
the circuits indicated in figure 8 are not all equivalent. As a basic rule, however, series 
connection in an impedance is equivalent to parallel connection in a capacitance and 
vice versa and it may be more useful to develop one or the other in a specific problem. 
Any one of the three descriptions is capable of being developed within the framework 
of the scheme used here. 

We have deliberately kept to the a, p scaling notation so that the individual effects 
of the resistance and capacitance scalingscan,be followed. Since we have chosen to work 
in terms of unit resistance scaled impedance, Z ( x ) / R ,  p is identical to the magnitude 
scaling parameter x of equation (1). This would not be the case if we had chosen to work 
in termsofcapacitance,forwhichthemagnitudescalingparameterwould be a,although, 
in either case, the frequency scaling parameter q is given by $3. The essential symmetry 
of the U, scaling, which has already been shown in figures 3 and 5 ,  is clearly shown in 
the parameter range plot of figure 8 in which the labels correspond to those used in 
sections 1 and 2 and in table 1. The single shaded quadrants are the regions of CPA 
behaviour and the four cross-shaded regions those in which WR behaviour has been 
found. The apparent symmetry line cup = 1 is the line along which there is no frequency 
scaling and for all magnitudes the elements add directly as resistors and capacitors in 
parallel or series. It should be noted however that whereas (a)  and ( b ) ,  and (c) and ( d ) ,  
exhibit symmetry about thex = 1, Z / R  = l,point, the high-frequency responses (e) and 
(f) do not. This follows from the basic requirement that the real component of the 
complex impedance has to be an increasing function with decreasing frequency. 

In table 3 we present a summaryof the scaled circuits reported in the literature which 
can be represented in the scaled transmission line form. It is clear from the table that 
the first three entries use only a single variable scaling factor, that of frequency, and 
although the networks have been constructed from different scaling models, this has 
been done in such a manner as to retain frequency scaling. The final case in table 3 is 
that proposed by Sapoval (1987). and can be seen to be equivalent to the Cantor block 

Table3. Summaryofpublishedmodels for fractally scaled metalJelectrolyte inlerlaces. Here 
a is a length scaling parameter and N is the number of new pores generated per iteration. 

Y ( w )  = 1/Z(w) C(w) = [iwZ(w)]-'. (29) 

" , .,, . , 

Model Author and figure Ly B W B  

Rough Cantor bar Liu (1985). figure 2 2 a!2 a 
Rough surface. reeular scaling Kaplan and Gray (1985), figure 2 2 a12 a 
Self-aifine Cantor block Kdplan eral(1987). Figure2 4ta a'I4 a 
Porous Serpinski carpet electrode Sapoval (1987) and Hill and Dissado (1988) (Nu)-' Na' n 

.. ~ . . ,  ,.,.. . , , I _ ,  ,iil., l v " , , : : * ~ - *  ,-., , . , , ~ ~  ~~~ ~~ 

~~ ~~~~ 

~~~~ ~~ ~ ~ ~~~ ~ ~ ~~ ~~ ~~~ 
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scaling proposed by Kaplan et al. (1987) with the additional freedom of magnitude 
scaling by way of the multiplicative number of pores per iteration. It was for this model 
that the FPRresponse was first determined (Hill and Dissado 1988), a response that we 
have shown to be of general applicability as indicated in table 1, where the Sapoval case 
iscase ( d ) .  

A novel feature of this work is that experimental observation of scaling responses, 
whether of CPA or FPR forms, has been shown to require that the sample on which 
the observation has been made can be represented, electrically, by the simple scaled 
transmission lines shown in figure 1. Although the nature of the elements forming the 
line may be complex, as indicated in figure 9, the macroscopically averaged response as 
given by CPA or FPR is insensitive to the microscopic detail and hence no conclusions can 
be made about the form of the material on thatscale. However, if the observed response 
is truncated at both high and low frequencies, then we have access to the resistance and 
capacitance values of the unscaled elementary unit, R and C, and to the ranges P N  and 
E N .  This by itself is insufficient to characterize the scaling because the number of 
elements Ncannot be determined. Only if a means of determining N ,  nor Pis available 
can the transmission line be determined completely. One technique that is available 
from this work is to make use of the E, P < 1 limits when these are available. As we have 
determined for these cases, the magnitudes of the relevant dispersions are simple 
functions of aor P, as for example equations (Ha), (l lb) and (2Oa). Once one of the 
scaling factors is known, the CPA exponent gives the other, Ncan then be determined, 
and the model characterized. In this sense FPR behaviour is more informative than CPA 
because, although the exponent of the power law component is a function of the scaling 
parameters, as for CPA, the dispersion in the non-power law component is only a function 
ofoneoftbe twoscalingparameters,seeequations(20a), (23a), (26a) and (28a). Hence 
the FPR systems are solvable, at least in terms of 'simple' scaled transmission lines. 

Both CPA and FPR behaviour have been observed in the capacitive response of a wide 
range of physical and biological materials (Cole 1972, Jonscher 1983, Dissado 1987). In 
many cases not one, but two, constant phase regions have been found (Hill 1978,1981) 
which, in terms of the approach used here, would imply the presence of two separately 
scaled relaxation mechanisms. 

4. Conclusions 

A number of scaled transmission lines have been examined and their electrical imped- 
ance properties are reported. Both CPA and FPR behaviour have been found and the 
conditions, in terms of scaling magnitudes and frequency ranges, for the observation of 
these response functionshavebeendetermined. it hasalso beenshown thatexperimental 
observation of these responses allows detailed analysis of the scaling element and range 
of scaling, particularly with FPR behaviour. 

The relationship between the scaled transmission lines and fractal lines has been 
examined and it has been shown that for particular cases the frequencyexponent of the 
CPA and FPR dispersions can be considered as a fractional dimension for the impedance 
(or admittance) response of an equivalent fractal transmission line. 
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